打印 上一主题 下一主题

[百度网盘]16年11月份邹博机器学习升级版II附讲义、参考书与源码(数学 xgboost lda hmm svm)

[复制链接]
跳转到指定楼层
楼主
admin 发表于 2017-10-2 06:18:27
18769 10

16年11月份邹博机器学习升级版II附讲义、参考书与源码(数学 xgboost lda hmm svm) 24课

课程介绍

本课程特点是从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。

1.每个算法模块按照“原理讲解→分析数据→自己动手实现→特征与调参”的顺序,“原理加实践,顶天立地”。

2.拒绝简单的“调包”——增加3次“机器学习的角度看数学”和3次“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。

3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的实际案例或Kaggle案例:广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析等。

4.强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。

5.阐述机器学习原理,提供配套源码和数据;确保“懂推导,会实现”。

6.删去过于晦涩的公式推导,代之以直观解释,增强感性理解。

7.对比不同的特征选择带来的预测效果差异。

8.重视项目实践(如工业实践、Kaggle等),重视落地。思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。

9.涉及和讲解的部分Python库有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn,涉及的其他“小”库在课程的实践环节会逐一讲解。

课程目录

第一课:机器学习的数学基础1 - 数学分析

1. 机器学习的一般方法和横向比较

2. 数学是有用的:以SVD为例

3. 机器学习的角度看数学

4. 复习数学分析

5. 直观解释常数e

6. 导数/梯度

7. 随机梯度下降

8. Taylor展式的落地应用

9. gini系数

10. 凸函数

11. Jensen不等式

12. 组合数与信息熵的关系

第二课:机器学习的数学基础2 - 概率论与贝叶斯先验

1. 概率论基础

2. 古典概型

3. 贝叶斯公式

4. 先验分布/后验分布/共轭分布

5. 常见概率分布

6. 泊松分布和指数分布的物理意义

7. 协方差(矩阵)和相关系数

8. 独立和不相关

9. 大数定律和中心极限定理的实践意义

10. 深刻理解最大似然估计MLE和最大后验估计MAP

11. 过拟合的数学原理与解决方案

第三课:机器学习的数学基础3 - 矩阵和线性代数

1. 线性代数在数学科学中的地位

2. 马尔科夫模型

3. 矩阵乘法的直观表达

4. 状态转移矩阵

5. 矩阵和向量组

6. 特征向量的思考和实践计算

7. QR分解

8. 对称阵、正交阵、正定阵

9. 数据白化及其应用

10. 向量对向量求导

11. 标量对向量求导

12. 标量对矩阵求导

第四课:Python基础1 - Python及其数学库

1. 解释器Python2.7与IDE:Anaconda/Pycharm

2. Python基础:列表/元组/字典/类/文件

3. Taylor展式的代码实现

4. numpy/scipy/matplotlib/panda的介绍和典型使用

5. 多元高斯分布

6. 泊松分布、幂律分布

7. 典型图像处理

8. 蝴蝶效应

9. 分形

第五课:Python基础2 - 机器学习库

1. scikit-learn的介绍和典型使用

2. 损失函数的绘制

3. 多种数学曲线

4. 多项式拟合

5. 快速傅里叶变换FFT

6. 奇异值分解SVD

7. Soble/Prewitt/Laplacian算子与卷积网络

8. 卷积与(指数)移动平均线

9. 股票数据分析

第六课:Python基础3 - 数据清洗和特征选择

1. 实际生产问题中算法和特征的关系

2. 股票数据的特征提取和应用

3. 一致性检验

4. 缺失数据的处理

5. 环境数据异常检测和分析

6. 模糊数据查询和数据校正方法、算法、应用

7. 朴素贝叶斯用于鸢尾花数据

8. GaussianNB/MultinomialNB/BernoulliNB

9. 朴素贝叶斯用于18000+篇/Sogou新闻文本的分类

第七课: 回归

1. 线性回归

2. Logistic/Softmax回归

3. 广义线性回归

4. L1/L2正则化

5. Ridge与LASSO

6. Elastic Net

7. 梯度下降算法:BGD与SGD

8. 特征选择与过拟合

第八课:Logistic回归

1. Sigmoid函数的直观解释

2. Softmax回归的概念源头

3. Logistic/Softmax回归

4. 最大熵模型

5. K-L散度

6. 损失函数

7. Softmax回归的实现与调参

第九课:回归实践

1. 机器学习sklearn库介绍

2. 线性回归代码实现和调参

3. Softmax回归代码实现和调参

4. Ridge回归/LASSO/Elastic Net

5. Logistic/Softmax回归

6. 广告投入与销售额回归分析

7. 鸢尾花数据集的分类

8. 交叉验证

9. 数据可视化

第十课:决策树和随机森林

1. 熵、联合熵、条件熵、KL散度、互信息

2. 最大似然估计与最大熵模型

3. ID3、C4.5、CART详解

4. 决策树的正则化

5. 预剪枝和后剪枝

6. Bagging

7. 随机森林

8. 不平衡数据集的处理

9. 利用随机森林做特征选择

10. 使用随机森林计算样本相似度

11. 数据异常值检测

第十一课:随机森林实践

1. 随机森林与特征选择

2. 决策树应用于回归

3. 多标记的决策树回归

4. 决策树和随机森林的可视化

5. 葡萄酒数据集的决策树/随机森林分类

6. 波士顿房价预测

第十二课:提升

1. 提升为什么有效

2. 梯度提升决策树GBDT

3. XGBoost算法详解

4. Adaboost算法

5. 加法模型与指数损失

第十三课:提升实践

1. Adaboost用于蘑菇数据分类

2. Adaboost与随机森林的比较

3. XGBoost库介绍

4. Taylor展式与学习算法

5. KAGGLE简介

6. 泰坦尼克乘客存活率估计

第十四课:SVM

1. 线性可分支持向量机

2. 软间隔的改进

3. 损失函数的理解

4. 核函数的原理和选择

5. SMO算法

6. 支持向量回归SVR

第十五课:SVM实践

1. libSVM代码库介绍

2. 原始数据和特征提取

3. 调用开源库函数完成SVM

4. 葡萄酒数据分类

5. 数字图像的手写体识别

6. SVR用于时间序列曲线预测

7. SVM、Logistic回归、随机森林三者的横向比较

第十六课:聚类(上)

1. 各种相似度度量及其相互关系

2. Jaccard相似度和准确率、召回率

3. Pearson相关系数与余弦相似度

4. K-means与K-Medoids及变种

5. AP算法(Sci07)/LPA算法及其应用

第十七课:聚类(下)

1. 密度聚类DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 谱聚类SC

4. 聚类评价AMI/ARI/Silhouette

5. LPA算法及其应用

第十八课:聚类实践

1. K-Means++算法原理和实现

2. 向量量化VQ及图像近似

3. 并查集的实践应用

4. 密度聚类的代码实现

5. 谱聚类用于图片分割

第十九课:EM算法

1. 最大似然估计

2. Jensen不等式

3. 朴素理解EM算法

4. 精确推导EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主题模型pLSA

第二十课:EM算法实践

1. 多元高斯分布的EM实现

2. 分类结果的数据可视化

3. EM与聚类的比较

4. Dirichlet过程EM

5. 三维及等高线等图件的绘制

6. 主题模型pLSA与EM算法

第二十一课:主题模型LDA

1. 贝叶斯学派的模型认识

2. 共轭先验分布

3. Dirichlet分布

4. Laplace平滑

5. Gibbs采样详解

第二十二课:LDA实践

1. 网络爬虫的原理和代码实现

2. 停止词和高频词

3. 动手自己实现LDA

4. LDA开源包的使用和过程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA与word2vec的比较

第二十三课:隐马尔科夫模型HMM

1. 概率计算问题

2. 前向/后向算法

3. HMM的参数学习

4. Baum-Welch算法详解

5. Viterbi算法详解

6. 隐马尔科夫模型的应用优劣比较

第二十四课:HMM实践

1. 动手自己实现HMM用于中文分词

2. 多个语言分词开源包的使用和过程分析

3. 文件数据格式UFT-8、Unicode

4. 停止词和标点符号对分词的影响

5. 前向后向算法计算概率溢出的解决方案

6. 发现新词和分词效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票数据特征提取


游客,如果您要查看本帖隐藏内容请回复


吾爱编程网 - 免责声明
1、吾爱编程网为非营利性网站,全站所有资料仅供网友个人学习使用,禁止商用
2、本站所有文档、视频、书籍等资料均由网友分享,本站只负责收集不承担任何技术及版权问题
3、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除下载链接并致以最深的歉意
4、本帖部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责
5、一经注册为本站会员,一律视为同意网站规定,本站管理员及版主有权禁止违规用户
6、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和吾爱编程网的同意
7、吾爱编程网管理员和版主有权不事先通知发贴者而删除本文




上一篇:2017年Python数据分析班升级版视频教程附讲义源码
下一篇:python分布式爬虫打造搜索引擎
收藏
收藏
支持
支持
反对
反对

主题推荐

回复

使用道具 举报

沙发
dmTang 发表于 2017-11-1 10:06:01
这个是学习学习
回复

使用道具 举报

板凳
玩家国度 发表于 2017-11-13 22:34:34
666666666666
回复

使用道具 举报

地板
blownsand 发表于 2018-12-5 15:50:33
哥顶的不是帖子,是寂寞!支持吾爱编程网!
回复

使用道具 举报

5#
VaderWang 发表于 2018-12-27 21:41:56
哥顶的不是帖子,是寂寞!支持吾爱编程网!
回复

使用道具 举报

6#
emailtoy1ng 发表于 2020-10-15 13:34:12
资源不错学习了
回复

使用道具 举报

7#
702686635 发表于 2020-10-17 21:27:01
64654654654
回复

使用道具 举报

8#
xdnk7889 发表于 2020-10-20 14:59:20
看帖看完了至少要顶一下,还可以加入到淘帖哦!支持吾爱编程网!
回复

使用道具 举报

9#
lin23871 发表于 2020-12-4 17:43:35
不管你信不信,反正我是信了。
回复

使用道具 举报

10#
sensor2020 发表于 2021-1-11 19:48:46
看帖看完了至少要顶一下,还可以加入到淘帖哦!支持吾爱编程网!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

返回顶部 返回列表

平台简介

吾爱编程网:http://www.52pg.net/是IT技能学习交流平台,我们提供了丰富的移动端开发、php开发、web前端开发、android开发、Java开发、Python开发、大数据开发、区块链开发、人工智能开发以及html5等大量的实战视频教程资源。(如果我们有侵犯了您权益的资源请联系我们删除)

点击这里给我发消息|Archiver|手机版|小黑屋|站点地图|吾爱编程  |网站地图

Powered by Discuz! X3.2??? 2017-2020 Comsenz Inc.??吾爱编程网